AXIS C Smart materials and interfaces

Smart or active materials have properties significantly impacted in a controlled fashion by external stimuli and are used in various fields such as sensors, information processing, memories, lighting systems. The current developments deal with 1) materials that can perform more than one task or that can be manipulated by several independent stimuli; 2) novel systems with reduced environmental impact or increased durability; 3) devices with elaborate architectures to tune the coupling between the materials and their environment. Three objectives has defined:

Fine tuning of light parameters in emissive materials.Emission of lightby materials can betriggered by different stimuli (light, electricity…), which is of special interest in lighting and sensing to control intensity, color, polarization and direction of the emitted light. Conjugated molecular materials, specific phosphorescent metal-ion, and doping of inorganic materials will be considered. Devices design and its effect on performance and stability in operating conditions will be taken care of. The challenge will be to isolate new materials with controlled compositions or shapes that allow for fine tuning of their properties.

Design of molecules, inorganic compounds, hybrid materials or heterostructures as smart responsive materialsfor the elaboration of sensors, systems dedicated to environmental and security issues, optoelectronic and information technologies. The search for new molecular architectures, exotic states of matter, synergetic effects through magnetic exchange, energy transfer or mechanical coupling within heterostructures, compounds at the verge of phase transitions are efficient approaches to reversibly change material properties by an external trigger. The main challenge is a deep understanding of the underlying mechanisms to better control response time, increase sensitivity by optimizing the coupling between the environment and the transducing element and improving specificity for sensing and monitoring applications.

Bioinspired and biointegrated materials.Multi-component nanoparticles with complementary functions(drug loading, active targeting, imaging…) or stimuli-responsive properties will be developed for drug delivery and bioimaging.Thin films and nanostructured biosurfacesof various composition, surface functionalization and microstructural organization (Langmuir-Blodgett films, heterostructures…), will also be designed to build responsive devices (biosensors, biofuel cells, biochip…) or anti-biofouling surfaces. The challenge lies in the control of the spatial organization, stability and confinement of active bio-components on solid surfaces, improvement of charge transfer kinetics.

Axe C 1

Coordinateurs:

  • Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser.
  • Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser.
  • Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser.