logo Charmmmat Labex Plan de travail 1

  • Accueil
  • Plan du site

 

feed-image
  • English (UK)
  • Français (FR)

UPSay Logo

  • Accueil
  • CHARMMMAT
    • Présentation
    • Organisation
    • Comité de pilotage
    • Conseil des tutelles
    • Laboratoires
    • Conseil scientifique
    • Actualités du LabEx
    • Congrès
  • Formation
    • Offre de formation
    • Liste des masters
    • Formation par la Recherche
    • Professeurs invités
  • Recherche
    • AXIS A Multi-catalysis, cascades and compartimentalization
    • AXIS B Catalysis and Materials for Energy and Environment
    • AXIS C Smart materials and interfaces
    • AXIS D Multifunctional probes and multiscale strategies
    • Résultats de recherche
  • Relations industrielles
    • Nos partenaires
    • Ecosystème
    • Vous êtes chercheur
    • Vous êtes industriel
  • Appels à projets
  • Emploi
  • Contact
AXIS B Catalysis and Materials for Energy and Environment

AXIS B Catalysis and Materials for Energy and Environment

This theme aims at developing new ways for 1) the production of value-added chemicals from raw materials through catalytic processes, 2) the conversion and storage of energy through physical-chemical processes and 3) the detection, capture and degradation of pollutants.

Innovative Catalytic Methodologies for Biomass conversion and CO2 activation.

Reactions and processes implementing renewable reactants (CO2 and biomass), displaying improved atom-economy and/or functioning under mild conditions are targeted to ultimately provide the bulk and fine chemicals supplied by the chemical industry.

Along these lines,transformations and shortcut catalyzed synthetic routes to value-added chemicals under environmentally friendly conditions, i.e.using clean oxidants or reductants, enzymatic or electrochemical methods, and developing complementary methodologies such as electro- and photocatalysis, microwave, flow chemistry, high-throughput screening, supported homogeneous catalysis, non-conventional media, are looked for.

Energy Conversion and Storage.

The three challenges to tackle are:

1- Development of materials and devices forH2 production, storage and use, based on cost-effective molecular systems or materials as well as catalysts for Proton Exchange Membranes (PEM) or Solid Oxide (SO).

2- Development of molecular systems, materials or devices for the direct conversion of solar energy into chemical energy by photoelectrochemical processes.

3- Development of highly efficient electrochemical storage energy materials for renewable energy production and mobility applications implementing various solutions. High energy and long lifetime electrodes for advanced Li-ion batteries (the most mature), high-energy and stable anodes for Mg-ion batteries (more prospective), and advanced nanostructured materials for supercapacitors (a requirement in the transportation sector) are targeted.

Depollution and remediation.

Depollution processes (including pollutant storage, detection and degradation) based on materials structured at different levels are targeted. Innovative catalytic porous materials exhibiting stability, renewability and eco-compatibility must be developed by integrating chemo-, photo- or electro-responsive molecules, supramolecular assemblies or nanoparticles within adapted matrices (surfaces, polymers or functional materials).

Coordinateurs:

    • Frédéric BANSE
    • Pierre MIALANE
    • Thierry GACOIN

Lire la suite...
AXIS A Multi-catalysis, cascades and compartimentalization

AXIS A Multi-catalysis, cascades and compartimentalization

Synthetic organic chemistry has considerably expanded in the last thirty years with the development of methods that theoretically enable the synthesis of any kind of complex natural products, even on a large scale. However, many issues remain to be addressed because new regulations and environmental constraints enforce to envision a more efficient organic synthesis that must combine the issues of conversion, selectivity, diversity and complexity with that of sustainability. The organic chemists should now include in their synthetic planning the notions of atom- and step-economy, toxicity of waste, energy cost, and recycling process. The design of multicatalytic cascades for the formation of complex molecules, to this end, can provide a solution to this challenge.

AxeA 1

The search for modular catalytic systems able to mediate the formation of complex products, whose structure can be fine-tuned
according to the reaction conditions, should provide a unique tool to create libraries of high added value molecules from simple synthons ideally derived from biomass.
Accordingly, the main goal of this priority theme is the design of a chemical toolbox that allows for performing multi-catalyzed cascade transformations leading to the one pot formation of complex molecular architectures.
This challenging issue is addressed following different approaches:
- The design, synthesis and characterization of multifunctional catalysts,

AxeA 2

- The design of multicatalytic systems through compartmentalization,

AxeA 3

- The development of new cascade reactions towards molecular diversity and complexity.

AxeA 4

Coordinateurs:

    • Philippe DAUBAN
    • Emmanuelle SCHULZ
    • Xavier MOREAU

Lire la suite...
AXIS C Smart materials and interfaces

AXIS C Smart materials and interfaces

Smart or active materials have properties significantly impacted in a controlled fashion by external stimuli and are used in various fields such as sensors, information processing, memories, lighting systems. The current developments deal with 1) materials that can perform more than one task or that can be manipulated by several independent stimuli; 2) novel systems with reduced environmental impact or increased durability; 3) devices with elaborate architectures to tune the coupling between the materials and their environment. Three objectives has defined:

Fine tuning of light parameters in emissive materials.Emission of lightby materials can betriggered by different stimuli (light, electricity…), which is of special interest in lighting and sensing to control intensity, color, polarization and direction of the emitted light. Conjugated molecular materials, specific phosphorescent metal-ion, and doping of inorganic materials will be considered. Devices design and its effect on performance and stability in operating conditions will be taken care of. The challenge will be to isolate new materials with controlled compositions or shapes that allow for fine tuning of their properties.

Design of molecules, inorganic compounds, hybrid materials or heterostructures as smart responsive materialsfor the elaboration of sensors, systems dedicated to environmental and security issues, optoelectronic and information technologies. The search for new molecular architectures, exotic states of matter, synergetic effects through magnetic exchange, energy transfer or mechanical coupling within heterostructures, compounds at the verge of phase transitions are efficient approaches to reversibly change material properties by an external trigger. The main challenge is a deep understanding of the underlying mechanisms to better control response time, increase sensitivity by optimizing the coupling between the environment and the transducing element and improving specificity for sensing and monitoring applications.

Bioinspired and biointegrated materials.Multi-component nanoparticles with complementary functions(drug loading, active targeting, imaging…) or stimuli-responsive properties will be developed for drug delivery and bioimaging.Thin films and nanostructured biosurfacesof various composition, surface functionalization and microstructural organization (Langmuir-Blodgett films, heterostructures…), will also be designed to build responsive devices (biosensors, biofuel cells, biochip…) or anti-biofouling surfaces. The challenge lies in the control of the spatial organization, stability and confinement of active bio-components on solid surfaces, improvement of charge transfer kinetics.

Axe C 1

Coordinateurs:

  • Clémence ALLAIN
  • Damien AUREAU
  • Denis TONDELIER

Lire la suite...
AXIS D Multifunctional probes and multiscale strategies

AXIS D Multifunctional probes and multiscale strategies

This theme builds on the achievements of the previous T1 axis, but also targets interaction with a widened community of physical chemists and life-science chemists from Paris-Saclay. It will base on state-of-the-art experimental platforms and computational facilities, and develop new analytical and computational methods.
Synergy between highly diverse platforms, methodology skills, and chemists, will be fostered to bring new ad hoc models and multiscale and multi-method analytical approaches, to address questions on complex systems and functions, in which chemistry brings essential insights. It encompasses the development of multi-dimensional analytical innovative couplings, the prediction of molecular structures, the characterization of reaction and interactions pathways, the use and development of both experimental methods and multi-scale computational modeling for a better micro- and macroscopic understanding of catalysis, chemical reactivity in the condensed and gas phases, at the interfaces, or in confined materials. The results will contribute to the other priority themes by helping deciphering and/or predicting the fundamental processes underlying the properties and functions of molecules and materials prepared or designed within these themes.
Chemistry has strong interfaces with physics, physical chemistry and life science. The underlying fundamental processes driving the properties of (bio)molecular architectures or materials are profoundly multiscale and multifunctional, and crucial for the design of these objects within the CHARM3AT priority themes. The theoretical and experimental platforms (including national facilities such as Synchrotron SOLEIL, IR-RMN, FRISBI, etc.) available within the perimeter of Paris-Saclay will be used to reinforce the partnership between chemists, physicists and biologists.

AxisD 1

Topologic and electronic density driven generation of alkali cation complexes”
H. Boufroura, S. Poyer, A. Gaucher, C. Huin, J-Y. Salpin, G. Clavier, D. Prim
Chem. Eur. J., 24, 8656-8663 (2018)

AxisD 2

Figure. Gauche : Spectre RMN 31P d’un cluster de cuivre (haut), et spectre simplifié (milieu), permettant une mesure aisée des couplages J pour les 3 sites P1, P2 et P3. Droite : comparaison entre déplacements chimiques du 31P expérimentaux et calculés, montrant le bon accord fournit par le code CASTEP.

AxisD 3

Figure. LC-MS (left) and ion mobility experiments (right) onto [M+Ag]+ ions using different solvent conditions.

Coordinateurs:

    • Jean-Yves SALPIN
    • Carine VAN HEIJNOORT
    • Fabienne BERTHIER

Lire la suite...
  •   AXIS B Catalysis and Materials for Energy and Environment AXIS B Catalysis and Materials for Energy and Environment Tagline
  •   AXIS A Multi-catalysis, cascades and compartimentalization AXIS A Multi-catalysis, cascades and compartimentalization Tagline
  •   AXIS C Smart materials and interfaces AXIS C Smart materials and interfaces Tagline
  •   AXIS D Multifunctional probes and multiscale strategies AXIS D Multifunctional probes and multiscale strategies Tagline
  •  
Frontpage Slideshow | Copyright © 2006-2012 JoomlaWorks Ltd.

Voir toutes les actualités

Actualités

AAP Recherche 2016

L'appel d'offre recherche de CHARM3AT pour l'année 2016 est terminé. veuillez trouver ci dessous les résultats:

Télécharger ici les projets sélectionnés


Calendrier de l'appel d'offre :


- A partir du 9 février 2016, dépôt des dossiers.
- Le  14 mars 2016, clôture du dépôt des dossiers.
- 21 avril 2016, expertise et classement des projets par les membres du COPIL

Projet SECM-TIRFM

SECM TIRFM

  Le PPSM vient de s'équiper d'une plateforme instrumentale couplant microscopie de fluorescence et microscopie électrochimique pour une analyse simultanée des propriétés photophysiques et électrochimiques d'échantillons à l'échelle micronique. Grâce à la technique TIRFM (Microscopie de Fluorescence en Réflexion Totale), il est possible de sonder les propriétés photophysiques (intensité et spectres de fluorescence) au voisinage immédiat d'une électrode (typiquement dans la couche de diffusion) lorsque des espèces à la fois électroactives et fluorescentes sont présentes dans le milieu. Le couplage avec la microscopie électrochimique (SECM) va permettre d'obtenir la même résolution spatiale d'analyse au niveau de la réponse électrochimique par rapport à la réponse en fluorescence, ce qui ouvre de nouvelles perspectives au niveau de l'utilisation d'électrodes nanostructurées par exemple.

  La partie microscopie électrochimique acquise dans le cadre d'un cofinancement entre le Labex CHARMMMAT et le réseau C'Nano IdF est un appareil de la société AMETEK dont la pointe (microélectrode) présente un déplacement asservi dans les 3 directions de l'espace au moyen de moteurs piézoélectriques, permettant ainsi un contrôle précis de la position. Un bipotentiostat permet un contrôle simultané du potentiel de la pointe qui sert de sonde et du substrat qui sert de deuxième électrode de travail et au voisinage de laquelle on enregistre la réponse photophysique.
  Cette plateforme est accessible à tout utilisateur désireux de pouvoir analyser des propriétés électrochimiques et photophysiques d'échantillons de manière simultanée, soit en relation avec un autre phénomène physico-chimique ou un événement biochimique (on bénéficie ainsi des avantages des deux détections) soit lorsque l'une des propriétés peut être modulée par l'autre signal (comme par exemple dans le cadre de systèmes électrofluorochromes ou photoélectrochimiques).

 Personne à contacter : Pr Fabien MIOMANDRE (Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser.)

Laboratoire PPSM – Ecole Normale Supérieure de Cachan

AAP Valorisation 2016

L'appel à projet Valorisation pour l'année 2016 est ouvert.

Télécharger ici l'appel à projets

Les dossiers seront évalués par le pôle formation au fil de l'eau, avant d'être validés par le COPIL.

Pour plus de détails consultez l'article AAP Valorisation 2016

Les projets devront être envoyés par e-mail à : Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser.

 

Nouveaux diffractomètres à Rayons X à l’ICMMO et à l’ILV

Nouveaux diffractomètres à Rayons X à l’ICMMO et à l’ILV


Les services de cristallographie de l’ICMMO  (Université Paris-Sud d’Orsay) et de l’ILV (Université de Versailles Saint-Quentin-en-Yvelines) se dotent de nouveaux diffractomètres de toute nouvelle génération, venant compléter le parc instrumental d’analyse de structure par diffraction des rayons X du périmètre du labex CHARM3AT. Grâce au soutien financier du labex CHARM3AT, de l’Ile de France (SESAME), de nouvelles études complémentaires pourront être menées au sein des deux instituts. Les nouveaux appareils (Bruker VENTURE D8) sont dotés des toutes nouvelles technologies de sources X et de détection. .

Lire la suite...

Nouveau spectromètre de masse au LAMBE

Le laboratoire Analyse et Modélisation pour le Biologie et l'Environnement vient de faire l'acquisition d'un nouveau spectromètre de masse. Obtenu grâce au soutien financier de la région Ile de France et du LabEx Charmmmat sur la base d'un partenariat regroupant plusieurs laboratoire du LabEx, (LAMBE, LPPSM, ICMMO, ILV), cet instrument a été installé sur le site d'Evry du LAMBE (Bâtiment Maupertuis – Université d'Evry val d'Essonne) fin juin 2015.

L'instrument acquis est un spectromètre de masse de type piège ionique 3D de dernière génération (Bruker Amazon Speed ETD), équipé de deux sources d'ionisation (electrospray et CaptiveSpray, permettant une gamme de débit étendue), et d'un module ETD/PTR (Electron Transfer Dissociation/Proton Transfer Reaction), permettant, par réactivité en phase gazeuse, de modifier si besoin le nombre et la nature des charges des ions formés par electrospray. Cet instrument peut être couplé à la chromatographie liquide ou à l'électrophorèse capillaire.

Lire la suite...

Page 8 sur 9

  • Début
  • Précédent
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • Suivant
  • Fin

Agenda

  • Comité de Pilotage n°59

    11 juillet 2025
  • Comité de Pilotage n°58

    12 mai 2022
  • Ecole de Catalyse CHARMMMAT 2022

    10 avril 2022
  • Clôture de l'AAP Recherche 2022

    28 mars 2022
  • Comité de Pilotage n°57

    18 mars 2022

Voir l'agenda complet

Appels à projets

  • AAP Recherche 2022

  • AAP SATT Poc’up (prématuration) et Maturation

  • AAP "au fil de l'eau" valorisation

  • AAP Prématuration IdEx 2018

  • AAP Recherche 2018

Voir tous les appels à projets

Le club des partenaires

En savoir plus

UPSay LogoCNRS smallUVSQ smallCEA smallCentraleSupelec smallENS smallUEVE smallEcole PolytechniqueSynchrotron SOLEILLogo CurieLogo INRAE

CHARMMMAT

  • Présentation
  • Organisation
  • Comité de pilotage
  • Conseil des tutelles
  • Laboratoires
  • Conseil scientifique
  • Congrès
  • Actualités

Formation

  • Offre de formation
  • Liste des masters
  • Formation par la Recherche
  • Professeurs invités

Recherche

  • AXIS A Multi-catalysis, cascades and compartimentalization
  • AXIS B Catalysis and Materials for Energy and Environment
  • AXIS C Smart materials and interfaces
  • AXIS D Multifunctional probes and multiscale strategies
  • Résultats de recherche

Relations industrielles

  • Nos partenaires
  • Ecosystème
  • Vous êtes chercheur
  • Vous êtes industriel
  • LabEx CHARMMMAT - Tous droits réservés
  • Rechercher sur le site
  • e-Mages Créations
  • Réalisation :